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Abstract

We describe the implementation of an angular power spectrum estimator in the flat sky approximation. POKER (P. Of
k EstimatoR) is based on the MASTER algorithm (Hivon et al 2002) developed in the context of CMB anisotropy. It
works entirely in discrete space and can be applied to arbitrary high angular resolution maps. It is therefore particularly
suitable for current and future infrared to sub-mm observations of diffuse emission, whether Galactic or Cosmological.
The code is publicly available at http://www.ias.u-psud.fr/poker.
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1. Introduction

Whether it is due to Galactic dust or synchrotron, to cosmological backgrounds such as the Cosmic Microwave Background
(CMB) or the Cosmic Infrared Background (CIB) that traces the integrated radiation of unresolved galaxies, diffuse
emissions are omnipresent in infrared and millimetric observations. The angular power spectrum of such radiations is
one of the main tools to constrain the structure of the Interstellar Medium, the clustering of IR galaxies (CIB) or
the cosmological parameters (CMB). In short, its estimation requires to Fourier transform the image and to average
its modulus square into frequency bins. However, the image has boundaries and often masked regions (e.g. to remove
bright point sources) which induce power aliasing and biases the estimation of the power spectrum if not accounted
for properly. The effect becomes quite significant when the signal has a steep power spectrum like k−3 as measured
for Galactic cirrus emission (Miville-Deschênes et al 2007) or even steeper than k−4 as for CMB anisotropy at angular
scales smaller than a few arcmin (see e.g. Reichardt et al 2009, Brown et al 2009). Recently, to account for non periodic
boundaries Das et al 2009 have proposed an original apodizing technique that helps to deconvolve the estimated power
spectrum from that of the observed patch boundaries. They also mitigate the impact of holes by a pre-whitening technique
applied to data in real space.

In the context of CMB anisotropy, Hivon et al 2002 have developed the MASTER method that allows to correct for
mask effects on the output binned power spectrum. They work on the full sky and account for its curvature. Instead of
classical Fourier analysis, they project the data onto spherical harmonics and go through the algebra of pseudo angular
power spectra (see Sect. 2). This idea has been successfully used in several experiments (e.g. de Bernardis et al 2000,
Benôıt et al 2003) and is also the basis of more refined algorithms used in e.g. WMAP (Hinshaw et al 2003) and Archeops
(Tristram et al 2005). However, direct use of MASTER in the context of infrared observations with a resolution of typically
a few arcsec requires to estimate Legendre polynomials up to orders ! of 10,000 or more for which current recurrences
and integration methods are numerically unstable. Other techniques developed in the context of CMB anisotropy such as
maximum likelihood estimation (Bond et al 1998) could be transposed to high resolution maps, but the numerical cost
∝ n3

pix is prohibitive for common applications when the analysis pipeline requires Monte-Carlo simulations.
This paper aims at transposing the pseudo-spectrum approach pioneered by MASTER to the context of high resolution

observations and classical Fourier analysis in the flat sky approximation. Its originality compared to other approaches
is that it works exclusively in discrete space and therefore avoids the complexity of resampling the data and integrating
Bessel functions. Our algorithm was nicknamed POKER, for “P. Of k EstimatoR”. The paper is organized as follows.
Section 2 provides the definitions and algebra involved in POKER and Sect. 3 shows its applications on simulations of
various astrophysical components spectra and a non trivial mask. Detailed derivations of our results are postponed to
appendices.

2. Power spectrum estimation on an incomplete observation of the sky

We first briefly state the limits of the flat sky approximation, then we recall the definitions of the power spectrum and
pseudo-power spectrum of data in the context of continuous Fourier transforms. Finally, we move to its counterpart in
discrete space and to the implementation of POKER.
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2.1. Flat sky approximation

Projecting an observed fraction of the sky on the tangential plane alters the image properties in a way that depends on
the specific reprojection scheme (e.g. gnomonic, cylindrical etc.). To first order, two points at a distance dθ on the sphere
appear at a distance tan(dθ) on the plane. The difference between the two is typically 1% for dθ = 10◦. It therefore
makes sense for observations whose sky fraction are a few degree wide to neglect the curvature effect and assume the sky
is flat (see e.g. Pryke et al 2009).

2.2. Continuous Fourier Analysis and masked Data

On such a flat 2-dimensional surface, a scalar field Tr depending on the direction of observation r is represented in
Fourier space by

Tk =

∫ ∞

−∞
drTre

−ik·r, (1)

Tr =

∫ ∞

−∞

dk

(2π)2
Tke

ik·r. (2)

For a random isotropic process, the 2D-power spectrum Pk is defined as

〈TkT
∗
k′〉 ≡ Pkδk−k′ (3)

where brackets denote statistical average. We denote by 1D-power spectrum its azimuthal average:

Pk ≡ 1

2π

∫ 2π

0
dθ TkT

∗
k . (4)

Pk is the physical quantity of interest which we want to reconstruct. It is the Fourier transform of the 2-point
correlation function. If the process is isotropic, the 2D and 1D-power spectra are related by

〈TkT
∗
k′〉 ≡ Pkδk−k′ = (2π)2Pkδk−k′ , (5)

In the following, we will drop the 1D or 2D qualifiers for readability and use indifferently the term power spectrum,
unless the difference needs to be emphasized. In practice however the integrals of Eqs. (1, 2) cannot run up to infinity
simply because of the limited size of the observation patch. This is accounted for by a weight function Wr applied to
the data. Its most simple form is unitary on the data, zero outside the observation range or where strong sources are
masked out. More subtle choices such as inverse noise variance weighting or apodization (cf. Sect. 3) are usually used.
Instead of the true Fourier amplitudes, we are then bound to measure the amplitudes of the masked data, a.k.a. the
pseudo-amplitudes

T̂k =

∫ ∞

0
drTrWre

−ik·r. (6)

Equation (4) applied to the pseudo-amplitudes gives the 1D-pseudo-power spectrum

P̂k =

∫ ∞

0
k1dk1 Kkk1Pk1 , (7)

where Kkk1 is the mixing matrix that depends on the weighting function Wr, the beam and filtering transfer functions.
Determining the signal power spectrum requires to solve this equation for Pk1 . A detailed derivation of the analytic
solution can be found in Hivon et al 2002.

2.3. Discrete Fourier Analysis and POKER

Any data set is by construction discretely sampled. Computing the quantities defined in the previous section requires
mathematical interpolation and/or resampling of these data and appropriate integration tools, especially if the underlying
data power spectrum is steep as for galactic cirrus whose P (k) ∼ k−3 (Miville-Deschênes et al 2007). Rather than dealing
with these difficulties, we keep the native pixelized description of the data and work completely in discrete space. We
use the Discrete Fourier Transform (hereafter DFT) as provided by data analysis softwares. For a map of scalar quantity
Dµν and of size Nx ×Ny pixels, it is defined as

Dmn =
1

NxNy

∑

µ,ν

Dµνe
−2iπ(µm/Nx+νn/Ny), (8)

Dµν =
∑

m,n

Dmne
+2iπ(µm/Nx+νn/Ny). (9)
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Figure 1. Map of the Fourier modes of the worked examples of Sect 3. The inner circle delimits the Nyquist range. Modes that
lie on the outer circle are examples of modes of larger modulus then kNyquist. For such modes, not all directions are sampled in
the Fourier plane (dashes represent the missing modes).

Throughout this work, although we will denote quantities in direct and Fourier space by the same name, Greek
indices will denote pixel indices in real space whereas roman indices will refer to amplitudes in Fourier space. Unless
stated otherwise, sums over µ and m (resp. ν and n) run from 0 to Nx − 1 (resp. Ny − 1). ∆θ is the angular resolution
of the map in radians. For a given wave-vector kmn, labelled by the m and n indices, its corresponding norm is denoted
by kmn = (2π/∆θ)

√
(m′/Nx)2 + (n′/Ny)2 with m′ = m (resp. n′) if m ≤ Nx/2 and m′ = Nx −m if m > Nx/2. This

convention ensures that on small angular scales k matches the multipole ! used in the description of CMB anisotropy.
The Nyquist mode is π/∆θ.

It is well known that the DFT slightly differs from the theoretical continuous Fourier so that Dmn does not strictly
equal Tkmn . In particular, the DFT deals with amplitudes for modes kmn that are outside the Nyquist range and in some
directions θmn only (see Fig. 1). It is therefore not possible to integrate Eq. (4) on the full range [0, 2π] for such modes
and so, the 1D-power spectrum is undefined outside the Nyquist range. In the following, we will therefore restrict to the
Nyquist range for power spectrum estimation. Note however, that mathematical sums implied in the following may still
run over the full ranges of pixels or DFT amplitude indices.

The direct DFT of the masked data result from the convolution of the DFT amplitudes by a kernel that depends
only on the mask DFT amplitudes (see sect. 2.5 for a more detailed discussion) and whose determination is detailed in
Appendix A. If the data D consist of signal T and noise N , we have

〈|D̂mn|2〉 =
∑

m′n′

|Kn,n′

m,m′ |2|Tm′n′ |2 + 〈N̂mn〉. (10)

Eq. (10) is the transcription in discrete space of Eq. (6).
The rapid oscillations of the convolution kernel introduce strong correlations between spatial frequencies and make

its inversion numerically intractable. (Pseudo-)Power spectra are therefore estimated on some frequency band-powers
(labelled b hereafter). The binning operator reads

Rmn
b =

{
kβ
mn
Ξb

if kblow ≤ kmn < kb+1
low

0 otherwise
. (11)

kblow is the mode of lowest modulus that belongs to bin b and Ξb is the number of wave vectors kmn that fall into the
bin b. The reciprocal operator that relates the theoretical value of the one-dimensional binned power spectrum Pb to its
value at kmn is

Qb
mn =

{ 1
kβ
mn

if kblow ≤ kmn < kb+1
low

0 otherwise
. (12)

Although not strictly required, results may be improved when the spectral index β is chosen so that kβPk is as flat as
possible1. In the case of Cosmic Infrared Background anisotropy, β * 1 (Planck Collab. 2011). The binned pseudo-power
spectra therefore reads

1 In the case of CMB, β ! 2 is the equivalent of the standard "("+ 1) prefactor that flattens the spectrum up to " ∼ 2000.
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Figure 2. Top: Mask applied to the simulated data. This mask is 1 where data are available, 0 outside the observation patch and
where bright sources have been masked out. Bottom: Same mask but with apodized boundaries. The apodization is done with a
Gaussian kernel in a way that only affects “observed” pixels: the fraction of the mask that is strictly zero is not artificially reduced.

P̂b =
∑

m,n∈b

Rmn
b |T̂mn|2, (13)

and the data power spectrum is related to its binned value Pb via

|Tm′n′ |2 * Qb′

m′n′Pb′ . (14)

With such binned quantities, Eq. (10) reads

〈P̂b〉 *
∑

b′

Mbb′Pb′ + 〈N̂b〉, (15)

with

Mbb′ =
∑

m,n∈b

∑

m′,n′∈b′

Rmn
b |Kn,n′

m,m′ |2Qb′

m′n′ . (16)

An unbiased estimate of the binned angular power spectrum of the signal is thus given by

P̃b *
∑

b′

M−1
bb′

(
P̂b′ − 〈N̂b′〉

)
. (17)

It is indeed easily checked that 〈P̃b〉 = Pb. Uncertainties on P̃b come from sampling and noise variance that are
estimated via Monte-Carlo simulations as described in the next section.

2.4. Statistical uncertainties

Statistical uncertainties on Pb come from signal sampling variance and noise variance. They are described by stochastic
processes of known power spectra and are obtained via Monte-Carlo simulations. For each realization, a map of sig-
nal+noise is produced and treated in the same way as described for the data in the previous section to give an estimate
P̃b with the same statistical properties as that of the true data. Altogether, these simulations provide the uncertainties
on our estimate. Indeed, the covariance matrix of P̃b is

Cbb′ =
〈 (

P̃b − 〈P̃b〉MC

)(
P̃b′ − 〈P̃b′〉MC

) 〉
MC

, (18)

with 〈·〉MC standing for Monte-Carlo averaging. The error bar on each P̃b is

σP̃b
=

√
Cbb, (19)

and the bin-bin correlation matrix is given by its standard definition

Ξbb′ =
Cbb′√

CbbCb′b′
. (20)
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2.5. Beam, Map Making and Transfer Functions

The above sections describe the main features of the algorithm that provides an unbiased estimate of the power spectrum
of data projected on a map. This power spectrum may however differ from the signal power spectrum. Indeed, the map
making process may alter the statistical properties of the signal, together with filtering and the convolution by the
instrumental beam. In the case of CMB anisotropy for which power spectrum estimation has been most extensively
studied, to a good approximation, the transfer function Fk of the map making and the filtering together reduces to
a function of k that multiplies the data power spectrum Pk. For instance, a minimal effect of the map making is
due to pixelization that is equivalent to a convolution in real space by a square kernel and therefore translates into a
multiplication in Fourier space. The effect of filtering can be determined by a set of Monte-Carlo simulations of timeline
processing and map making. The beam smearing effect is also described by a multiplicative function Bk. In the present
framework it is possible to be even more precise and to account for the exact beam shape and orientation since the
beam can be completely described by its Fourier coefficients Bmn rather than by its approximated annular average Bk.
This may be of particular relevance for small fields over which the scanning strategy of the instrument is approximately
constant and increases the effect of beam asymmetry. The map making together with the filtering transfer function is
also likely to be more accurately represented by a function of both Fourier indices Fmn, so that Eq. (10) actually reads

〈|D̂mn|2〉 =
∑

m′n′

|Kn,n′

m,m′ |2Fm′n′Bm′n′Pkm′n′

+〈N̂(!mn)〉, (21)

These new contributions can be absorbed in the definition of the convolution kernel Kn,n′

m,m′ so that no further modi-
fication of the algorithm is needed from Eq. (10) onward.

2.6. Algorithm

A scheme of the algorithm is proposed on Fig. 6. To run the complete process of power spectrum and statistical uncer-
tainties estimation, one needs:

(a) A tool to generate maps of a given power spectrum
(b) A tool to compute the power spectrum of a 2D map and to bin it into a set of predefined bins with a weight that

may be a function of k.

(c) A tool to compute Mbb′ . It involves the computation of the convolution kernel Kn,n′

m,m′ . This is actually the longest

part of the work since it is a N2
pix operation, but it only needs to be done once.

All these tools are provided in the POKER library2. The algorithm can be summarized as follows:

1. Insert the observed sky patch of size Nx × Ny pixels into a “large patch” (N ′
x × N ′

y) and padd it with zeros. This
will allow for the correction of aliasing by scales larger than the observed sky. The size of the patch and the zero
padding that should be used remains to be determined by the user. A factor 1.2 to 2 is enough for most cases.
A compromise must be chosen between the uncertainty due to large scales that the user tries to estimate and the
uncertainty associated to the unknown power in these larges scales that needs to be assumed for the simulations. It is
also possible to apodize the observation patch to limit large scale aliasing (see Sect. 3 for more details). When there
are no holes in the observed patch and when noise is subdominant, this can improve the bin to bin correlation at high
k.

2. Define a binning for the estimated power spectrum on the large patch. Typically, modes sampled by the data set are
the DC level and modes between kmin = 2π/∆θ/max(Nx, Ny) and the Nyquist mode kc = π/∆θ. The minimum
bandwidth of the bins may be chosen as ∼ 2kmin.

3. Determine the noise pseudo-power spectrum – 〈N̂b〉 of Eq. (15). If it cannot be determined analytically, run a set of
Monte-Carlo realization of noise only maps (with (a)) and compute the power spectrum with (b) of the masked maps
inserted into the large patch. The average of these Monte-Carlo realizations gives 〈N̂b〉.

4. Compute Mbb′ with (c) – Eqs (11, 12, 16). This operation scales like N2
p but it only needs to be done once. The

implementation proposed in the POKER library can be run on a multiprocessor machine.
5. Compute the pseudo-power spectrum of the masked data on the large patch P̂b with (b) – Eq. (A.1).
6. Apply Eq. (17) to obtain the binned power spectrum of the data Pb. The resolution of this equation can be done

with any suitable tool of linear algebra. Note that Mbb′ can be rather small and its inversion straightforward with
standard numerical tools and to compute Eq. 17 as is. At this stage, it may be useful to discard the first bin of the
matrix. Indeed, it describes the coupling of the DC level in the map and is therefore irrelevant for a power spectrum
analysis whereas it tends to alter the conditioning of Mbb′ .

2 http://www.ias.u-psud.fr/poker. This library makes use of some of the HEALPix programs (Gorski et al 1998).
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Figure 3. Typical maps of dust with a k−3 power spectrum (top) and CMB temperature (bottom). The square is the outline of
the observed patch. It is extracted from a larger simulated map to ensure non periodic boundary conditions. Masked data appear
in white.

Figure 4. Dust (k−3). Comparison between the input theoretical power spectrum (black) and the average result of POKER (red)
applied to 500 signal+noise simulations. The “naive” approach (blue, see text) is also shown for reference. Error bars on the
top plots are those associated to the data (i.e. those of a single realization). The square line shows the binned theoretical power
spectrum to which POKER’s average result should be compared. The bottom plots shows the ratio of the reconstructed binned
power spectrum to the input theoretical binned power spectrum (the bias) and the displayed error bar is that of the average of
the Monte-Carlo realization (in other words: the error bar of the top plot divided by

√
500). These plots altogether show that

POKER is unbiased. The mask used in this case is that of the top plot of Fig. 2, with 1 where data are available, 0 elsewhere.

7. Determine the statistical error bars associated to this estimate. For that, run a set of Monte-Carlo realizations of
signal+ noise. The input spectrum required for these simulations can be a smooth interpolation of the binned power
spectrum determined at the previous step. For each realization, compute the pseudo-power spectrum (using (b) on the
masked data embedded in the large patch), subtract 〈N̂b〉, solve Eq. (17). This provides a set of random realizations
of P̃b. The error bars and the bin to bin covariance matrix are then given by Eqs. (18,19).

3. Worked example

POKER was applied to real data to measure the Cosmic Infrared Background anisotropy in the Planck-HFI data
(Planck Collab. 2011). In complement, we here present more limited worked examples on simulated data but with steeper
power spectra and a more complex mask. Indeed, it is in this context that mask aliasing effects are the strongest.

We assume that the observation patch is a square of 100 pixels of 2 arcmin side. These parameters are chosen so
that they sample a range of angular modes over which the CMB temperature power spectrum exhibits peaks and a
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varying slope. Note however that the map resolution can be arbitrary high since Fast Fourier Transform algorithms work
in dimensionless units. To force non periodic boundary conditions, we extract the patch from a map that is 50% larger
and the simulation is performed on the latter. At last, we draw random holes across the observation patch to mimic
point source masking. We consider two types of signal. In the first case, we assume that the data are represented by a
pure power law spectrum k−3 typical of Galactic dust emission. In the second case, we assume that the data are CMB
with a standard ΛCDM power spectrum. At these angular scales, the slope of the CMB power spectrum varies from
∼ k−2 to even steeper than k−6 and exhibits oscillations. Fig. 3 shows an example of such simulated data. The result of
POKER applied to each case is presented on Figs. 4 and 5. In the case of dust, we choose a binning index β = 3 as defined
in Eq. (12), in the case of CMB, we do not make any assumption, i.e. we choose β = 0. We also show what the direct
Fourier transform of the observed patch without further correction would give to illustrate the magnitude of the effect
corrected by POKER. Note that this reference estimate labelled “Naive P (k)” is not the pseudo-power spectrum of the
data in the sense of Sect. 2. Indeed, it is not computed on the whole map from which the observation patch is extracted
and padded with zeros. The bottom plots of Figs. 4 and 5 show the bin to bin correlation matrix of each estimate. In the
case of dust, the correlations are small (∼ 15%). This is not the case for the simulated CMB, for which there is strong bin
to bin correlation, although the power spectrum remains unbiased. This correlation is due to large scale aliasing induced
by the holes in the mask and show up so significantly because at high k, the CMB spectrum is very steep. A way to
improve on this is to apodize the mask around the edges and the holes left by point source masking (Fig. 2). In this work,
we simply use a Gaussian kernel with a FWHM of twice the map resolution to smooth the edges. The same analysis
as before is performed with this mask and results are presented on the right hand of Fig. 5. This time, the bin to bin
correlation is significantly reduced, albeit a slight increase in sampling variance at low k due to the effective reduction of
the observation area. A more performant way to do such apodization is described in Grain et al 2009. Finally, on larger
angular scales, there is a slight bias in the recovery of the CMB power spectrum that does not show up in the case of
dust. It is because in the particular case of pure power law spectrum, Eq. (14) is an equality. It is no longer the case
for a CMB spectrum whose average slope varies with k and exhibits peaks. No binning could faithfully represent such
a spectrum. However, the remaining bias is negligible compared to the statistical error bar of the data. If we force the
simulated CMB to have a constant power spectrum over frequency bins, the recovery is unbiased. There is no general
prescription regarding the definition of the binning and the apodization. They must however be chosen with care since
the bin to bin residual correlation may lead to residual ringing (mask aliasing) on the data power spectrum (considered
as a single random realization), even if the estimator is unbiased on average.

4. Conclusion

We have developed a tool that provides an unbiased estimate of the angular power spectrum of diffuse emission in the flat
sky approximation limit, for arbitrary high resolution and complex masks. POKER corrects for mask aliasing effects, even
in the context of steep power spectra and provides a way to estimate statistical error bars and bin to bin correlations. It
complements tools developed in the context of spherical sky and potentially full sky surveys (e.g. Hivon et al 2002) but for
lower angular resolutions at the moment. POKER is also complementary to other methods in the flat sky approximation
such as Das et al 2009.

POKER can readily be generalized to polarization power spectra estimation. To date, experiments that have measured
polarized diffuse emission (Kovac et al 2002, Kogut et al 2003, Ponthieu et al 2005, Ade et al 2008, Chiang et al 2010,
Bierman et al 2011) were closely related to CMB experiments, they had observation patches of few to hundred percents of
the sky and angular resolutions larger than a few arcmin. Optimal tools have been developed to measure the polarization
power spectra in this context (Chon et al 2004, Smith 2006, Smith & Zaldarriaga 2007, Grain et al 2009 and references
therein) and it is unlikely that POKER would bring something significantly new for such observations. It is however
expected that smaller, deeper and higher resolution polarized surveys will happen in the future, for which POKER might
be an interesting approach. One of the main features that should then be addressed is the ability of POKER to correct
for E −B leakage. Although we postpone the detailed studies of POKER’s properties regarding polarized power spectra
estimation for a future work, we provide the formalism in Appendices B and C for the sake of completeness. All the
software used in this work is publicly available at http://www.ias.u-psud.fr/poker.
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Figure 6. Schematic flow chart of POKER.

Appendix A: Mask convolution kernel for Temperature

If not specified, sums run from 0 to Nx − 1 and 0 to Ny − 1. The pseudo-Fourier coefficients of the weighted data read

T̂mn =
1

NxNy

∑

µ,ν

TµνWµνe−2iπ(µm/Nx+νn/Ny), (A.1)

=
1

NxNy

∑

µ,ν

∑

m1,n1

Tm1n1e
2iπ(µm1/Nx+νn1/Ny)

∑

m2,n2

Wm2n2e
2iπ(µm2/Nx+νn2/Ny)e−2iπ(µm/Nx+νn/Ny),

=
1

NxNy

∑

m1,n1,m2,n2

∑

µ,ν

Tm1n1Wm2n2e
2iπ[µ(m1Nx+m2−m)/Nx+ν(n1+n2−n)/Ny ]. (A.2)

m1 +m2 belongs to [0, 2Nx − 2], so

Nx−1∑

µ=0

e2iπµ(m1+m2−m)/Nx = Nxδ
m−m1
m2

+Nxδ
Nx+m−m1
m2

. (A.3)

Similar relations hold for indices n, hence

T̂mn =
∑

m1,n1,m2,n2

Tm1n1Wm2n2

(
δm−m1
m2

+ δNx+m−m1
m2

)(
δn−n1
n2

+ δ
Ny+n−n1
n2

)
. (A.4)

Equation (8) specifies that Fourier coefficients are only defined for m,n ∈ [0, Nx]× [0, Ny ], hence

T̂mn =
∑

m1,n1

Tm1,n1K
n,n1
m,m1

(A.5)

with

Kn,n1
m,m1

=






Wm−m1, n−n1 if m1 ≤ m and n1 ≤ n
Wm−m1, Ny+n−n1 if m1 ≤ m and n1 > n
WNx+m−m1, n−n1 if m1 > m and n1 ≤ n
WNx+m−m1, Ny+n−n1 if m1 > m and n1 > n

. (A.6)

Appendix B: Mask convolution kernel for Polarization only

Polarization maps are represented in direct space by Stokes parameters Q and U , in angular space by E and B. These parameters are related
by

9
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Qµν =
∑

m1,n1

[
cos(2φµν

m1n1
)Em1n1 − sin(2φµν

m1n1
)Bm1n1

]
e2iπ(µm1/Nx+νn1/Ny) (B.1)

Uµν =
∑

m1,n1

[
sin(2φµν

m1n1
)Em1n1 + cos(2φµν

m1n1
)Bm1n1

]
e2iπ(µm1/Nx+νn1/Ny), (B.2)

The polarization pseudo-Fourier coefficients read

Êmn =
1

NxNy

∑

µ,ν

[cos(2φµν
mn)Qµν + sin(2φµν

mn)Uµν ]Wµνe−2iπ(µm/Nx+νn/Ny), (B.3)

=
1

NxNy

∑

m1,n1

∑

m2,n2

∑

µ,ν

Wn2
m2

[
cos (2φµν

mn − 2φµν
m1n1

)Em1n1 + sin (2φµν
mn − 2φµν

m1n1
)Bm1n1

]
(B.4)

×e2iπ(µm1/Nx+νn1/Ny)e2iπ(µm2/Nx+νn2/Ny)e−2iπ(µm/Nx+νn/Ny),

B̂mn =
1

NxNy

∑

µ,ν

[− sin(2φµν
mn)Qµν + cos(2φµν

mn)Uµν ]Wµνe
−2iπ(µm/Nx+νn/Ny), (B.5)

=
1

NxNy

∑

m1,n1

∑

m2,n2

∑

µ,ν

Wn2
m2

[
− sin (2φµν

mn − 2φµν
m1n1

)Em1n1 + cos (2φµν
mn − 2φµν

m1n1
)Bm1n1

]
(B.6)

×e2iπ(µm1/Nx+νn1/Ny)e2iπ(µm2/Nx+νn2/Ny)e−2iπ(µm/Nx+νn/Ny).

We now have to compute the following two summations

I1 =
∑

µ,ν

cos (2φµν
mn − 2φµν

m1n1
)e2iπ(µm1/Nx+νn1/Ny)e2iπ(µm2/Nx+νn2/Ny)e−2iπ(µm/Nx+νn/Ny), (B.7)

I2 =
∑

µ,ν

sin (2φµν
mn − 2φµν

m1n1
)e2iπ(µm1/Nx+νn1/Ny)e2iπ(µm2/Nx+νn2/Ny)e−2iπ(µm/Nx+νn/Ny). (B.8)

Because φµν
mn is the angle between kmn and rµν and φµν

m1n1 is the angle between km1n1 and rµν , we have φµν
mn − φµν

m1n1 = φmn
m1n1

with

cos(φm1n1
mn ) = km1n1 · kmn.

As a consequence, the sine and cosine do not depend on pixel indices, µ and ν, so we can use the orthogonality relation used for temperature,
i.e. ∀ m1 +m2 belongs to [0, 2N − 2] :

N−1∑

µ=0

e2iπµ(m1+m2−m)/Nx = Nxδm−m1
m2

+NxδN+m−m1
m2

,

to finally get

Êmn =
∑

m1,n1

Kn,n1
m,m1

[cos (2φm1n1
mn )Em1n1 + sin (2φm1n1

mn )Bm1n1 ] , (B.9)

B̂mn =
∑

m1,n1

Kn,n1
m,m1

[− sin (2φm1n1
mn )Em1n1 + cos (2φm1n1

mn )Bm1n1 ] . (B.10)

From this last results, we can compute the pseudo-power spectra, keeping in mind that

〈
En

mE∗
m′n′

〉
= CEE

mn δm,m′ δn,n′ ,
〈
Bn

mB∗
m′n′

〉
= CBB

mn δm,m′δn,n′

and

〈
En

mB∗
m′n′

〉
=

〈
Bn

mE∗
m′n′

〉
= CEB

mn δm,m′δn,n′ .

We define the estimated pseudo-spectra as

P̂EE
mn =

∣∣∣Êmn

∣∣∣
2
,

ˆCBB
mn =

∣∣∣B̂mn

∣∣∣
2

and

P̂EB
mn =

1

2

[
ÊmnB̂

∗
mn + B̂mnÊ

∗
mn

]
= Re

[
ÊmnB̂

∗
mn

]
= Re

[
B̂mnÊ

∗
mn

]
.

By using those definitions, we can easily show that

P̂EE
mn =

∑

m1,n1

|Kn,n1
m,m1

|2
[
cos2 (2φm1n1

mn )CEE
m1n1

+ sin2 (2φm1n1
mn )CBB

m1n1
+ sin (4φm1n1

mn )CEB
m1n1

]
,

P̂BB
mn =

∑

m1,n1

|Kn,n1
m,m1

|2
[
sin2 (2φm1n1

mn )CEE
m1n1

+ cos2 (2φm1n1
mn )CBB

m1n1
− sin (4φm1n1

mn )CEB
m1n1

]
,

P̂EB
mn =

∑

m1,n1

|Kn,n1
m,m1

|2
[
−
1

2
sin (4φm1n1

mn )CEE
m1n1

+
1

2
sin (4φm1n1

mn )CBB
m1n1

+
(
cos2 (2φm1n1

mn ) − sin2 (2φm1n1
mn )

)
CEB

m1n1

]
.

10
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In a matrix formulation, this reads




P̂EE
mn

P̂BB
mn

P̂EB
mn



 =
∑

m1,n1




MEE,EE

mn,m1n1 MEE,BB
mn,m1n1 MEE,EB

mn,m1n1

MBB,EE
mn,m1n1 MBB,BB

mn,m1n1 MBB,EB
mn,m1n1

MEB,EE
mn,m1n1 MEB,BB

mn,m1n1 MEB,EB
mn,m1n1








PEE
m1n1

PBB
m1n1

PEB
m1n1



 (B.11)

=
∑

m1,n1




Mdiag

mn,m1n1 Moff
mn,m1n1 Mcross

mn,m1n1

Moff
mn,m1n1 Moff

mn,m1n1 −Mcross
mn,m1n1

− 1
2M

cross
mn,m1n1

1
2M

cross
mn,m1n1

Mdiag
mn,m1n1 −Moff

mn,m1n1








PEE
m1n1

PBB
m1n1

PEB
m1n1



 , (B.12)

with

Mdiag
mn,m1n1

= cos2 (2φm1n1
mn )|Kn,n1

m,m1
|2, (B.13)

Moff
mn,m1n1

= sin2 (2φm1n1
mn )|Kn,n1

m,m1
|2, (B.14)

Mcross
mn,m1n1

= sin (4φm1n1
mn )|Kn,n1

m,m1
|2. (B.15)

When the above mixing matrices are averaged over the two azimuthal (or polar for flat sky) angles, it can be shown that∫ ∫
Mcross

mn,m1n1
dθdθ1 = 0. However, before such an averaging, it is not a priori zero.

Appendix C: Mask convolution kernel for temperature polarization cross-correlation

For the cross-correlation of the temperature with CMB maps, we remind first that

〈
TmnE∗

m′n′
〉
=

〈
EmnT ∗

m′n′
〉
= CTE

mn δm,m′δn,n′

and

〈
TmnB∗

m′n′
〉
=

〈
BmnT ∗

m′n′
〉
= CTB

mn δm,m′ δn,n′ .

The estimated cross-pseudo-spectrum are defined as

P̂TE
mn =

1

2

[
T̂mnÊ

∗
mn + ÊmnT̂

∗
mn

]
= Re

[
T̂mnÊ

∗
mn

]
= Re

[
ÊmnT̂

∗
mn

]

and

P̂TB
mn =

1

2

[
T̂mnB̂

∗
mn + B̂mnT̂

∗
mn

]
= Re

[
T̂mnB̂

∗
mn

]
= Re

[
B̂mnT̂

∗
mn

]
.

From this and from the above defined pseudo-Fourier coefficients, we show that

(
P̂TE
mn

P̂TB
mn

)
=

∑

m1,n1

(
Mgaid

mn,m1n1 Mffo
mn,m1n1

−Mffo
mn,m1n1 Mgaid

mn,m1n1

)(
PTE
m1n1

PTB
m1n1

)
, (C.1)

with

Mgaid
mn,m1n1

= cos (2φm1n1
mn )|Kn,n1

m,m1
|2, (C.2)

Mffo
mn,m1n1

= sin (2φm1n1
mn )|Kn,n1

m,m1
|2. (C.3)

As is the case for the cross blocks in the polarization case, the azimuthal average of Mffo
mn,m1n1 is vanishing, i.e.

∫ ∫
Mffo

mn,m1n1dθdθ1 = 0.
However, before such an averaging, it is not a priori zero.
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