next up previous contents
Next: Load calibration and determination Up: Description of the calibration Previous: Description of the calibration   Contents

Skydips and determination of the forward efficiency

In a skydip, the atmospheric emission, as seen by the receiver ( \ensuremath{T_\ensuremath{\mathrm{sky}}\ifthenelse{\equal{}{}}{}{^\ensuremath{\mathrm{}}}}), is measured at equally spaced airmass ( \ensuremath{a}). \ensuremath{T_\ensuremath{\mathrm{sky}}\ifthenelse{\equal{}{}}{}{^\ensuremath{\mathrm{}}}} is a combination of the atmospheric emission \ensuremath{T_\ensuremath{\mathrm{emi}}\ifthenelse{\equal{tot}{}}{}{^\ensuremath{\mathrm{tot}}}} and of losses \ensuremath{T_\ensuremath{\mathrm{loss}}\ifthenelse{\equal{}{}}{}{^\ensuremath{\mathrm{}}}}

\begin{displaymath}
\ensuremath{T_\ensuremath{\mathrm{sky}}\ifthenelse{\equal{}...
...m{loss}}\ifthenelse{\equal{}{}}{}{^\ensuremath{\mathrm{}}}}.
\end{displaymath} (7)

And the atmospheric emission is the sum of the atmospheric emission in both receiver bands
\begin{displaymath}
\ensuremath{T_\ensuremath{\mathrm{emi}}\ifthenelse{\equal{t...
...\mathrm{ima}}}}}{1+\ensuremath{G_\ensuremath{\mathrm{im}}}},
\end{displaymath} (8)

each contribution computed from an equivalent atmospheric temperature \ensuremath{T_\ensuremath{\mathrm{atm}}\ifthenelse{\equal{}{}}{}{^\ensuremath{\mathrm{}}}} and opacity $\tau$
\begin{displaymath}
\ensuremath{T_\ensuremath{\mathrm{emi}}\ifthenelse{\equal{s...
...{ima}{}}{}{_\ensuremath{\mathrm{ima}}}} \right) } \right\}}.
\end{displaymath} (9)

The zenith opacity can be written as a combination of a dry and wet components
\begin{displaymath}
\tau = \ensuremath{\tau\ifthenelse{\equal{dry}{}}{}{_\ensur...
...\tau\ifthenelse{\equal{wet}{}}{}{_\ensuremath{\mathrm{wet}}}},
\end{displaymath} (10)

where \ensuremath{\tau\ifthenelse{\equal{dry}{}}{}{_\ensuremath{\mathrm{dry}}}} is the opacity due to the permanent components of the atmosphere (mainly oxygen) and \ensuremath{\tau\ifthenelse{\equal{wet}{}}{}{_\ensuremath{\mathrm{wet}}}} is proportional to the varying amount of water vapor amount ( \ensuremath{\mathrm{w_{H_2O}}}) in the atmosphere: $\ensuremath{\tau\ifthenelse{\equal{wet}{}}{}{_\ensuremath{\mathrm{wet}}}}=
\ensuremath{\mathrm{\alpha_{H_2O}}}\,\ensuremath{\mathrm{w_{H_2O}}}$

Assuming that \ensuremath{F_\ensuremath{\mathrm{eff}}} and \ensuremath{T_\ensuremath{\mathrm{loss}}\ifthenelse{\equal{}{}}{}{^\ensuremath{\mathrm{}}}} are independent of the elevation and that \ensuremath{\tau\ifthenelse{\equal{dry}{}}{}{_\ensuremath{\mathrm{dry}}}} and \ensuremath{\mathrm{\alpha_{H_2O}}} are correctly modeled by an atmospheric model, we obtain that \ensuremath{T_\ensuremath{\mathrm{sky}}\ifthenelse{\equal{}{}}{}{^\ensuremath{\mathrm{}}}} is a function of \ensuremath{F_\ensuremath{\mathrm{eff}}}, \ensuremath{T_\ensuremath{\mathrm{loss}}\ifthenelse{\equal{}{}}{}{^\ensuremath{\mathrm{}}}}, \ensuremath{G_\ensuremath{\mathrm{im}}}, \ensuremath{\mathrm{w_{H_2O}}} and the airmass ( \ensuremath{a}). If \ensuremath{G_\ensuremath{\mathrm{im}}} and \ensuremath{T_\ensuremath{\mathrm{loss}}\ifthenelse{\equal{}{}}{}{^\ensuremath{\mathrm{}}}} are assumed to be measured by other means, then \ensuremath{F_\ensuremath{\mathrm{eff}}} and \ensuremath{\mathrm{w_{H_2O}}} can be fitted through the measured couples ( \ensuremath{T_\ensuremath{\mathrm{sky}}\ifthenelse{\equal{}{}}{}{^\ensuremath{\mathrm{}}}}, \ensuremath{a}).


next up previous contents
Next: Load calibration and determination Up: Description of the calibration Previous: Description of the calibration   Contents
Gildas manager 2014-07-01